Discrete Trigonometric Matrix Functions

نویسنده

  • Douglas R. Anderson
چکیده

We explore a pair of matrix solutions to a certain discrete system which has various properties similar to the familiar continuous trigonometric functions, including basic identities and sum and difference of two angles formulas. Then we examine separation properties of these matrices. An oscillation result is also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hidden quantum R - matrix in discrete time classical Heisenberg magnet

We construct local M-operators for an integrable discrete time version of the classical Heisenberg magnet by convolution of the twisted quantum trigonometric 4×4 R-matrix with certain vectors in its " quantum " space. Components of the vectors are identified with τ-functions of the model. Hirota's bilinear formalism is extensively used. The construction generalizes the known representation of M...

متن کامل

Computation of Trigonometric Functions by the Systolic Implementation of the CORDIC Algorithm

Trigonometric functions are among the most useful functions in the digital signal processing applications. The design introduced in this paper computes the trigonometric functions by means of the systolic arrays. The method for computing these functions for an arbitrary angle, , is the CORDIC algorithm. A simple standard cell is used for the systolic array. Due to the fixed inputs, in some...

متن کامل

Computation of Trigonometric Functions by the Systolic Implementation of the CORDIC Algorithm

Trigonometric functions are among the most useful functions in the digital signal processing applications. The design introduced in this paper computes the trigonometric functions by means of the systolic arrays. The method for computing these functions for an arbitrary angle, , is the CORDIC algorithm. A simple standard cell is used for the systolic array. Due to the fixed inputs, in some...

متن کامل

/ 97 09 16 8 v 1 2 3 Se p 19 97 Zero curvature representation for classical lattice sine - Gordon equation via quantum R - matrix

Local M-operators for the classical sine-Gordon model in discrete space-time are constructed by convolution of the quantum trigonometric 4×4 R-matrix with certain vectors in its " quantum " space. Components of the vectors are identified with τ-functions of the model. This construction generalizes the known representation of M-operators in continuous time models in terms of Lax operators and cl...

متن کامل

ar X iv : h ep - t h / 97 09 16 8 v 2 1 1 O ct 1 99 7 Zero curvature representation for classical lattice sine - Gordon equation via quantum R - matrix

Local M-operators for the classical sine-Gordon model in discrete space-time are constructed by convolution of the quantum trigonometric 4×4 R-matrix with certain vectors in its " quantum " space. Components of the vectors are identified with τ-functions of the model. This construction generalizes the known representation of M-operators in continuous time models in terms of Lax operators and cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997